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Digital breast tomosynthesis (DBT) is an emerging breast cancer screening and
diagnostic modality that uses quasi-three-dimensional breast images to provide detailed
assessments of the dense tissue within the breast. In this study, a framework of
a 3D-Mask region-based convolutional neural network (3D-Mask RCNN) computer-
aided diagnosis (CAD) system was developed for mass detection and segmentation
with a comparative analysis of performance on patient subgroups with different
clinicopathological characteristics. To this end, 364 samples of DBT data were used
and separated into a training dataset (n = 201) and a testing dataset (n = 163).
The detection and segmentation results were evaluated on the testing set and on
subgroups of patients with different characteristics, including different age ranges,
lesion sizes, histological types, lesion shapes and breast densities. The results of our
3D-Mask RCNN framework were compared with those of the 2D-Mask RCNN and
Faster RCNN methods. For lesion-based mass detection, the sensitivity of 3D-Mask
RCNN-based CAD was 90% with 0.8 false positives (FPs) per lesion, whereas the
sensitivity of the 2D-Mask RCNN- and Faster RCNN-based CAD was 90% at 1.3 and
2.37 FPs/lesion, respectively. For breast-based mass detection, the 3D-Mask RCNN
generated a sensitivity of 90% at 0.83 FPs/breast, and this framework is better than the
2D-Mask RCNN and Faster RCNN, which generated a sensitivity of 90% with 1.24 and
2.38 FPs/breast, respectively. Additionally, the 3D-Mask RCNN achieved significantly
(p < 0.05) better performance than the 2D methods on subgroups of samples with
characteristics of ages ranged from 40 to 49 years, malignant tumors, spiculate and
irregular masses and dense breast, respectively. Lesion segmentation using the 3D-
Mask RCNN achieved an average precision (AP) of 0.934 and a false negative rate
(FNR) of 0.053, which are better than those achieved by the 2D methods. The results
suggest that the 3D-Mask RCNN CAD framework has advantages over 2D-based mass
detection on both the whole data and subgroups with different characteristics.
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INTRODUCTION

Breast cancer is the most common malignancy in women.
Full-field digital mammography (FFDM) is commonly used
to screen for breast cancer (Nystrom et al., 2002). However,
mammography has an inherent limitation when tissue overlaps,
especially in dense breasts, which causes mammography to
miss some suspicious cancerous lesions (Carney et al., 2003).
Digital breast tomosynthesis (DBT) is an emerging breast
cancer screening and diagnostic modality that takes quasi-three-
dimensional imaging that can be used to provide a detailed
assessment of the dense tissue within the breast. DBT has
decreased the effect of overlapping tissue on screening, thereby
improving lesion detection, characterization and diagnosis and
making this approach superior to digital mammography (DM)
(Michell et al., 2012; Haas et al., 2013). The integration of DBT
into the diagnostic setting is associated with improved diagnostic
performance of breast cancer due to the increased specificity
(Bahl et al., 2019; Conant et al., 2019). The combination of DBT
and mammography resulted in significant gains in the sensitivity
and specificity of cancer detection compared with DM alone
(Fontaine et al., 2019; Li et al., 2019; Skaane et al., 2019). Due to its
improvements in patient diagnosis efficiency, DBT is becoming
the standard of care in both screening and diagnostic breast
images (Chong et al., 2019).

Early detection of masses on DBT can facilitate improved
treatment and management in breast cancer. Additionally,
segmentation of breast masses from the background tissue is
important for accurate mass characterization and interpretation.
However, the increment of the 3D information of breast tissue
for DBT also increases the image reading workload by 2-fold
(Tagliafico et al., 2017). Manual detection/segmentation of the
breast region is therefore becoming impractical under a large
number of samples/slices. Consequently, there is a need for
computational methods to assist in the evaluation of DBT, both
to address the workload issues and to maximize the performance
of cancer detection and segmentation.

To this end, studies developed computer-aided diagnosis
(CAD) system in DBT to facilitate mass detection and/or
segmentation in a clinical setting. The conventional CAD studies
have focused on 2D analysis of the slices of DBT using a variety
of hand-crafted features (Reiser et al., 2006; Varela et al., 2006).
Previous study used classical seed region growing algorithm to
enhance the contour of a mass from a given region of interest
(ROI) with the ability to adaptively adjust the threshold value
(Berber et al., 2013). A Gaussian mixture models based on
handcrafted intensity and texture measures were developed to
segment breast masses in DBT (Pohlmann et al., 2017).

Compared to the conventional CAD using handcrafted
features, deep learning-based CAD methods, which are based
on end-to-end learning using a large amount of data, have
an important role in DBT (Geras et al., 2019) due to their
accuracy and efficiency. The deep CAD framework is reported
to achieve much better performance than that achieved by
using handcrafted features to detect masses in DBT (Yousefi
et al., 2018). Moreover, a layered pathway evolution method
was proposed to compress a deep convolutional neural network

(DCNN) to classify masses in DBT (Samala et al., 2018). Previous
studies developed a CAD system for mass detection and diagnosis
using a DCNN with transfer learning from mammograms
(Samala et al., 2016, 2019). A U-net based deep architecture was
utilized to automatically segment breast masses on DBT data
(Lai et al., 2020). To improve efficacy and accuracy in deep
learning-based mass detection/segmentation, recent studies used
CAD system based on one of the most successful object detection
method, Faster RCNN [24] on mammograms (Ribli et al., 2018)
and DBT (Fan et al., 2019). The existing studies were mainly
performed using a DCNN based on 2D slices of DBT images for
mass detection/segmentation. Nevertheless, volumetric, higher-
dimensional information are more complicated so as to capture
more sufficient, high-level features from 3D images. However,
whether the 3D deep learning methods are superior to the
traditional mass detection methods remains unknown.

There is also controversy regarding the efficiency of CAD
methods for detecting masses in DBT from patients with different
characteristics. For example, the DBT increases the cancer
detection rate but is less effective for women with extremely dense
breasts (Vourtsis and Berg, 2019). A recent study reported that
DBT enabled the detection of more cancers in all density and
age groups compared with DM, especially cancers classified as
spiculated masses and architectural distortions (Osteras et al.,
2019). DBT and DM screening increased the detection rate of
histologically favorable tumors compared with that attained by
DM screening (Hofvind et al., 2018). Therefore, it is of great
interest to evaluate and compare the performances of deep
learning-based mass detection and segmentation methods using
DBT in patients with various characteristics, including different
age ranges, breast densities, mass shapes and mass sizes.

Here, we proposed a framework for a 3D-MaskRCCN-based
CAD system extended from our previous work of Faster RCNN
on 2D slices of DBT (Fan et al., 2019), for the detection and
segmentation of breast masses. To evaluate the effectiveness of 3D
mask detection, we compared the results of the 3D-Mask RCNN,
2D-Mask RCNN, and Faster RCNN on images from patients with
different characteristics. Our study was performed to enhance
the efficiency and effectiveness mass detection/segmentation
with DBT data and to facilitate an improved understanding
of the 3D deep learning-based methods on different types
of breast cancers.

MATERIALS AND METHODS

Histological Analysis
Malignant and benign tumors were determined by biopsies
using histological analysis. The breast density was determined
according to the Breast Imaging Reporting and Data System (BI-
RADS) ACR categories and/or quantification, which ranged from
1 to 4. Breasts with up to 25% mammary gland parenchyma were
classified as ACR 1 (almost entirely fat), and those with 26–50%
gland parenchyma (average density) were defined as ACR 2. The
breasts with 51–75% gland parenchyma were classified as ACR 3
and those with more than 75% gland parenchyma (high density)
were classified as ACR 4. The ACR type 3 and 4 breasts were
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categorized as dense breasts while ACR type 1 and 2 breasts were
categorized as non-dense breasts.

Dataset
The imaging and clinical data were collected from Fudan
University Affiliated Cancer Center with Institutional Review
Board (IRB) approval. Table 1 shows the characteristics of the
samples used in this study. A total of 364 samples were collected
(the mean age was 52.31 years, the age ranged from 18 to
88 years, and the median age was 51 years). Among samples, 75
were benign and 289 were determined to be malignant tumors
by biopsy. The dense and non-dense breasts represented 75.8
and 24.2% of the total samples, respectively. There were 123
round/oval, 113 spiculate and 128 irregular masses. The data were
randomly separated into the training dataset (n = 201) to train a
deep learning-based CAD system and the testing dataset (n = 163)
to test the effectiveness of the CAD. There were no significant
differences in the ages, histologic types, mass types, and breast
densities of the training and the testing datasets (p> 0.05).

Craniocaudal (CC) and mediolateral oblique (MLO) view
DBT images were acquired by a Selenia Dimensions TM unit
(Hologic, American) using a total tomographic angular range
of 20◦ with a 1◦ increment of rotation and 20 projection views
(PVs). The number of slices ranged from 20 to 124 (mean = 62.70
and median = 62), and the number of slices containing a lesion
ranged from 6 to 111 (mean = 34.85 and median = 32). For
each slice, the in-plane resolution was 106 × 106 µm. The entire
DBT data set included 716 views from 364 breasts with 364
masses. The breast mass sizes ranged from 10.15 to 140.90 mm
(mean = 36.45 mm and median = 33.40 mm).

Image Preprocessing
Digital breast tomosynthesis images were reconstructed into a
unified spacing slice (1.0 mm) using the simultaneous algebraic
reconstruction technique (SART) (Zhang et al., 2006). To save
computational memory and avoid the calculation of large-
scale convolutions for the background pixels in the deep
learning-based CAD system, the skin and the background were
excluded from the breast region using a dynamic multiple
thresholding-based breast boundary method (Wu et al., 2010;
Kus and Karagoz, 2012).

Mask RCNN-Based CAD System
3D-Mask RCNN Architecture
As an extension of the Faster RCNN (Ren et al., 2017) which
performs the object detection of rectangular boxes as both a
regression and classification problem task, Mask RCNN adds an
additional branch that outputs the object mask (He et al., 2020).
We developed a 3D-Mask RCNN-based breast mass detection
and segmentation model, which is shown in Figure 1. Due to the
substantial amount of memory required by the 3D convolution
kernel in the network, we used small regions of the images
(referred to as patches) with sizes of 256 × 256 × 64. The
patches were used for training the 3D-Mask RCNN to obtain
the mass detection model. Then, the model was applied to the
patches in the testing set, which were subsequently recombined to
reconstruct the entire DBT. The prediction probabilities of each
patch are used to obtain the mass probability for the DBT, and the
probable mass region was obtained by a bounding box.

The original Mask RCNN model was modified into the 3D
version (Figure 1). In the network, the Residual Networks

TABLE 1 | Patient clinicopathological characteristics.

Characteristics All (n = 364) Training dataset (n = 201) Testing dataset (n = 163) p

Age (Years) 0.807

<40 47 (12.91%) 22 (6.04%) 25 (6.87%)

40–49 116 (31.87%) 65 (17.86%) 51 (14.01%)

50–59 96 (26.37%) 54 (14.84%) 42 (11.54%)

60–69 76 (20.88%) 43 (11.81%) 33 (9.07%)

>70 29 (7.97%) 17 (4.67%) 12 (3.30%)

Histological type 0.98

Benign 75 (20.60%) 42 (11.54%) 33 (9.07%)

Malignant 289 (79.40%) 159 (43.68%) 130 (35.71%)

Mass type 0.73

Round/oval 123 (33.79%) 69 (18.96%) 54 (14.84%)

Spiculate mass 113 (31.04%) 59 (16.21%) 54 (14.84%)

Irregular 128 (35.16%) 73 (20.05%) 55 (15.11%)

Breast density 0.63

Non-dense1 276 (75.82%) 51 (14.01%) 37 (10.16%)

Dense2 88 (24.18%) 150 (41.21%) 126 (34.62%)

Tumor maximum diameter (mm) 0.38

10 ≤ d < 30 267 154 113

30 ≤ d < 50 337 184 153

50 ≤ d 112 56 56

1ACR 1 and 2.
2ACR 3 and 4.
The differences in the patient characteristics of the groups in the training and testing datasets were compared using a χ2 test.
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FIGURE 1 | 3D Mask RCNN architecture.
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FIGURE 2 | FROCs for the training and testing sets in (A) breast-based and (B) lesion-based mass detection.

(ResNet)-Feature Pyramid Network (ResNet-FPN) backbone was
used to extract different scales of the feature pyramid (He
et al., 2016; Lin et al., 2017). FPN combines bottom-up features
with top-down features in different scale. The ResNet has a
structure of a depth of 50 layers in the 4th stage (ResNet-50-
C4). This ResNet along with the FPN improve both the accuracy
and speed of feature extraction. A region proposal network
(RPN) was used to generate candidate bounding boxes from
the input image. A quantization-free layer, i.e., RoIAlign was
adopted to align the extracted feature maps with the inputs. This
layer reduces misalignments between ROIs and the extracted

features of RoIPool layer. The detection branch conducted mass
detection for each proposed ROIs using a classifier network
and bounding-box regression to obtain the probabilities and
position information for the boxes. The mask branch obtained
probabilities and position information from the feature maps
and predicted a segmentation mask from each ROI using a
fully connected network (FCN) in a pixel-to-pixel manner. The
rectified linear unit (ReLU) were used as activation function in
all the layers. The 3D-Mask RCNN were compared with 2D-
Mask RCNN, Faster RCNN and Spatial Fuzzy C-Means (SFCM)
(Zhang and Li, 2014) methods.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 November 2020 | Volume 7 | Article 599333

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-599333 November 5, 2020 Time: 14:16 # 5

Fan et al. Mass Detection and Segmentation on DBT

TABLE 2 | Mean numbers of FPs per lesion and breast at different sensitivities from the FROC curves.

Sen (%) 3D DBT 2D DBT

3D-Mask RCNN 2D-Mask RCNN Faster RCNN 2D-Mask RCNN Faster RCNN

L B L B L B L B L B

60 0.10 0.08 0.22 0.19 0.29 0.17 0.35 0.28 0.83 0.17

70 0.16 0.22 0.38 0.34 0.54 0.33 0.72 0.68 1.63 0.33

80 0.33 0.34 0.69 0.77 1.18 0.97 1.25 1.26 2.99 0.97

85 0.57 0.57 0.91 1.06 1.66 1.49 1.95 2.33 4.26 1.49

90 0.80 0.83 1.30 1.24 2.37 2.38 2.77 3.08 5.36 2.38

95 1.10 1.02 2.38 2.80 4.05 3.30 4.25 4.28 7.04 3.30

Sen, sensitivity; L, lesion-based mass detection; B, breast-based mass detection. The lowest FP values for the mass detection methods are in bold.
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FIGURE 3 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems in (A) lesion-based and (B) breast-based detection.

3D-Mask RCNN Training
The hyperparameters of the networks including batch size, RPN
train anchors, number of epochs, learning rate, and backbone are
shown in Supplementary Table S1. To train the Mask RCNN, the
network was initialized using the strategy proposed by He et al.
(2015) which has good performance and was trained using the
Adam optimizer (Kingma and Ba, 2014). For mass segmentation,
the mask loss was defined only with the positive ROI. The initial
learning rate was 0.001 and it was reduced by a factor of 0.5
after every 50 epochs. This learning rate was changed during
training to achieve increased performance and faster training.
Each mini-batch had 32 proposed ROIs. A mask branch for
predicting an object mask was added to the RCNN. The same
end-to-end training was performed to jointly train the RPN and
the whole network.

In the training of the Faster RCNN, which was used in
comparison with our framework, the weights were randomly
initialized using a zero-mean Gaussian distribution. The initial
learning rate determined by experiments was set as 0.001 for all
the layers and was reduced by a factor of 0.5 after every 50 epochs.
Each mini-batch had 2 images per GPU with 256 sampled ROIs.
The loss function was divided into two parts: the first part was the
classification loss, and the second part was the bounding box loss,
with the Smooth L1 regularization defined in Ren et al. (2017).

End-to-end training that jointly trains the RPN and Faster RCNN
was performed to train the whole network.

Performance Analysis
The detected target was compared with the true masses marked
by an experienced radiologist. More specifically, an experienced
radiologist manually annotated the 3D bounding boxes, and
the true positive (TP) objects were represented by the ROIs
extracted from the radiologist-marked locations. The background
or non-mass regions were labeled as negative cases. For mass
segmentation, the detection was determined to be a TP if its
intersection over union (IOU) for the true masses was greater
than 50%. The ratio of the positive to negative ROIs was 3 to 2.

We calculated a free-response receiver operating characteristic
(FROC) curve defined as the plot of the sensitivity versus
the average number of false positives per breast/lesion. The
FROC curve was computed by varying the thresholds of
the object prediction confidence (Bandos et al., 2010). The
lesion-based FROC (the same lesion imaged in the CC and
MLO views was regarded as different targets for detection)
and the breast-based curve (the same lesion imaged in two
views of a breast was considered to be one target and
the detection of one or both was regarded as a TP) were
both assessed. The average precision (AP) and false negative

Frontiers in Molecular Biosciences | www.frontiersin.org 5 November 2020 | Volume 7 | Article 599333

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-599333 November 5, 2020 Time: 14:16 # 6

Fan et al. Mass Detection and Segmentation on DBT

TABLE 3 | Comparison of the FPs of the 2D-Mask RCNN, 3D-Mask RCNN and the Faster RCNN-based CAD at a sensitivity of 90%.

Characteristic 2D-Mask RCNN1 Faster RCNN1 3D-Mask RCNN1 3D-Mask RCNN vs. 2D-Mask RCNN2 3D-Mask RCNN vs. Faster RCNN2

Age

<40 1.6 2.8 1.00 0.291 0.1

40–49 2.62 2.76 1.21 0.024 0.026

50–59 2.83 2.09 0.69 0.100 0.047

60–69 0.27 1.3 0.48 0.015 0.062

>70 0 0.08 0 0.097 0.192

Histological type

Benign 1.6 4.09 1.36 0.058 0.029

Malignant 1.28 1.76 0.67 0.015 0.019

Mass type

Round/oval 0.78 1.2 0.41 0.061 0.017

Spiculate mass 0.9 1.7 0.75 0.015 0.022

Irregular 3 4.54 1.20 0.023 0.016

Breast density

Non-dense 0.18 1 0.35 0.101 0.064

Dense 2.47 2.82 1.03 0.005 0.010

Maximum diameter (mm)

10 ≤ d < 30 1.3 3.15 0.77 0.007 0.030

30 ≤ d < 50 1.26 2.24 0.60 0.007 0.010

d ≥ 50 1.98 2.71 1.19 0.037 0.039

1False positive (FP) values at a sensitivity of 90%. 2P values are provided for comparisons of differences between the area under the free-response receiver operating
characteristic (FROC). The lowest FP values and significant p values are in bold.

rate (FNR) were used to evaluate the effectiveness of the
segmentation methods.

The comparisons of the performances of the two CAD systems
were conducted by calculating the differences between the area
under the FROC (Bornefalk and Hermansson, 2005; Bandos et al.,
2009) using the Bootstrap test to resample the prediction score
of the detection system under non-parametric assumptions. The
statistical significance of the performance difference between our
3D-Mask RCNN and the other two 2D deep CAD systems was
estimated based on the breast-based FROC curves.

Ten-fold cross-validation (CV) was used for the training
dataset to tune the hyperparameters of the deep learning-based
CAD system. In each CV cycle, the deep learning-based CAD
systems were trained using nine subsets as the training set and
one subset as the testing set. The hyperparameter with the best
performance in the 10-fold CV was used to train the CAD system
using all the samples in the training set. Then, the trained model
was applied to the testing dataset to evaluate its effectiveness on
mass detection/segmentation.

RESULTS

Assessment and Comparison of Mass
Detection Methods
Comparison of the Deep Mass Detection Methods on
All Samples in Testing Set
Mass detection was performed on all the samples in the testing set
using the 3D-Mask RCNN, and the results were compared with
those of the 2D-Mask RCNN and Faster RCNN (Figure 2). The
results of the 3D-Mask RCNN CAD system achieved a sensitivity

of 90% with 0.80 FPs/lesion and 0.83 FPs/breast, respectively.
The mean numbers of FPs per breast at different sensitivities,
which were determined based on the FROC curves, are shown in
Table 2 and Figure 3. Our 3D-Mask RCNN-based CAD system
clearly has better detection performance (in terms of fewer FPs)
than that of the 2D-Mask RCNN or the Faster RCNN at all
the sensitivities.

For these methods, the detection performances were
compared, and statistical tests showed a significant difference
in the areas under the breast-based FROC curves between the
3D-Mask RCNN and 2D-Mask RCNN methods (p = 0.005).
Moreover, the 3D-Mask RCNN method achieved significantly
better detection performance than that of the Faster
RCNN-based system with a p value of 0.007. These results
demonstrated that 3D-Mask RCNN-based CAD outperformed
the 2D methods of the 2D-Mask RCNN and Faster RCNN
(Supplementary Table S2).

In addition to the deep learning-based mass detection using
3D information of DBT data, the effectiveness of these methods is
also examined on 2D slices of DBT. To this end, we evaluated the
detection performances of the 2D-Mask RCNN and Faster RCNN
using the imaging slice that shows the lesion with maximum
diameter among that of all the DBT slices. The results showed
that the Mask RCNN achieved better performance than the Faster
RCNN in terms of fewer FPs/lesion, whereas an inverse result
was observed for the breast-based evaluation, which showed
fewer FPs/breast for the Faster RCNN compared with the Mask
RCNN (Table 2). The two methods for both the lesion- and
breast-based mass detection on 2D slices of DBT showed lower
performance detection compared with that based on 3D volume
of DBT (Table 2).
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FIGURE 5 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems for patients with (A) non-dense and (B) dense breasts.

Comparison of the Deep Mass Detection Methods on
Patients With Various Characteristics
A comprehensive comparison of the mass detection results of the
3D and 2D deep learning methods was performed on samples
with different patient characteristics. The FPs per breast at a
sensitivity of 90% for the CAD systems are shown in Table 3.
The performances of the 3D-Mask RCNN, 2D-Mask RCNN and
Faster RCNN on patients with different characteristics including
benign/malignant tumors, breast densities and ages are shown in
Figures 4–6, respectively.

The 3D-Mask RCNN achieved fewer FPs/breast for almost all
the age ranges. For the patients with ages from 40 to 49 years,
the 3D-Mask RCNN had significantly better performance than
that of the 2D-Mask RCNN (p = 0.024) and the Faster RCNN
(p = 0.026). Additionally, the mass detection performance

in terms of the fewest FPs/breast was higher for malignant
tumors than benign tumors for all the detection methods
(Figure 4). The 3D-Mask RCNN also achieved significantly
better performance in the detection of malignant tumors than
the 2D-Mask RCNN and the Faster RCNN with p values
of 0.015 and 0.019, respectively. All the methods achieved
lower mass detection performance for irregular tumors than
other mass types with the highest FPs/breast. Among the mass
types, the 3D-Mask RCNN model achieved significantly better
detection performance on spiculate or irregular masses than
either the 2D-Mask RCNN or the Faster RCNN-based CAD
system (p< 0.05).

Furthermore, it was observed that the detection performance
is lower in samples with dense breasts than those with
non-dense breasts in terms of low FPs for all the detection
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FIGURE 6 | FROC curves for the 3D-Mask RCNN-, Faster RCNN- and 2D-Mask RCNN-based CAD systems for patients with ages (A) less than 40 years, (B)
40–49 years, (C) 50–59 years, and (D) 60–69 years.

methods (Figure 5). The 3D-Mask RCNN achieved
significantly better detection performance than the 2D-
Mask RCNN- and the Faster RCNN-based (p = 0.005 and
0.010, respectively) CAD in patients with dense breasts.
Furthermore, deep learning-based mass detection performs
better for larger masses than smaller masses (Figure 6).
Again, our 3D-Mask RCNN method has better mass detection
performance than the other methods for all the diameter
sizes (p< 0.05).

Case Study of the Mass Detection of the Deep
Learning-Based Mass Detection Methods
Figure 7 shows the examples of the mass detection for the
3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN methods.
From this figure, tumors with low densities are easier for the
CAD system to detect (Figures 7A–C). The three methods also
showed high prediction scores on dense breast with characteristic
of malignant, oval and small tumor (Figure 7D). However, the
Faster RCNN method showed a false positive detection result
(Figure 7C) while the 2D Mask RCNN showed lower detection

score than the other methods (Figure 7A). Figure 8 illustrates
the mass detection results in patients with dense breast, but
with different age ranges, mass shapes and histological types.
The results showed that 3D deep mass detection achieved better
performance than those of the other two 2D methods, which
failed to detect masses in patients with dense breasts and
spiculate tumors. However, all three methods failed to detect
the masses of patients with large lesion sizes and dense breasts
(Figure 8C). Additionally, the results showed low detection
scores for all the three methods on patients with large lesion
sizes, dense breasts and irregular shapes (Figure 8D). Figure 9
illustrates the detection results for patients with dense breasts.
Our 3D-Mask RCNN CAD system outperformed the other 2D
methods on the four cases. The 2D-Mask RCNN and Faster
RCNN achieved lower detection performance than the 3D-
Mask RCNN in the detection of large tumors (Figures 9B,C).
Compared with the 3D method, it is more difficult for the
2D or Faster RCNN to discriminate lesions and background
regions in patients with dense breasts with smaller mass
size (Figures 9 A,D).

Frontiers in Molecular Biosciences | www.frontiersin.org 8 November 2020 | Volume 7 | Article 599333

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-599333 November 5, 2020 Time: 14:16 # 9

Fan et al. Mass Detection and Segmentation on DBT

FIGURE 7 | Examples of mass detection results using the 3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN on patients with different densities. Four patients are
included (from left to right) with the following characteristics: (A) aged 55 years, low density breast, malignant tumor, spiculate mass, and maximum tumor diameter
of 43.24 mm; (B) aged 54 years, low density breast, malignant tumor, irregular mass, and maximum tumor diameter of 28.36 mm; (C) aged 69 years, low density
breast, malignant tumor, oval mass, and maximum tumor diameter of 28.36 mm; and (D) aged 45 years, dense breast, malignant tumor, oval mass, and maximum
diameter of 41.42 mm (green: ground truth box, yellow and red: detection box).
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FIGURE 8 | Examples of mass detection results for the 3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN in patients with dense breast. Four patients are included
(from left to right) with the following characteristics: (A) aged 60 years, dense breast, benign tumor, oval mass, and maximum tumor diameter of 24.62 mm; (B) aged
30 years, dense breast, malignant tumor, spiculate mass, and maximum tumor diameter of 38.35 mm; (C) aged 43 years, dense breast, malignant tumor, irregular
mass, and maximum tumor diameter of 46 mm; and (D) aged 51 years, dense breast, malignant tumor, irregular mass, and maximum tumor diameter of 59.82 mm
(green: ground truth box, yellow and red: detection box).

Frontiers in Molecular Biosciences | www.frontiersin.org 10 November 2020 | Volume 7 | Article 599333

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-599333 November 5, 2020 Time: 14:16 # 11

Fan et al. Mass Detection and Segmentation on DBT

FIGURE 9 | Examples of mass detection results for the 3D-Mask RCNN, 2D-Mask RCNN and Faster RCNN in patients with dense breast. Four patients are included
(from left to right) with the following characteristics: (A) aged 33 years, dense breast, benign tumor, oval mass, and maximum tumor diameter of 24.24 mm. (B) aged
52 years, dense breast, benign tumor, spiculate lesion, and maximum tumor diameter of 50.35 mm; (C) aged 48 years, dense breast, malignant tumor, spiculate
lesion, and maximum tumor diameter of 62.72 mm; and (D) aged 40 years, dense breast, benign tumor, irregular mass, and maximum tumor diameter of 26.58 mm
(green: ground truth box, yellow and red: detection box).
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TABLE 4 | Tumor segmentation results of the 3D-Mask RCNN, 2D-Mask RCNN
and SFCM-based CAD method.

Characteristics 3D-Mask RCNN 2D-Mask RCNN SFCM

AP FNR AP FNR AP FNR

All 0.934 0.053 0.730 0.260 0.674 0.317

Age

<40 0.934 0.055 0.734 0.255 0.684 0.307

40–49 0.934 0.052 0.731 0.259 0.671 0.320

50–59 0.929 0.057 0.756 0.233 0.676 0.315

60–69 0.921 0.065 0.743 0.246 0.689 0.303

>70 0.950 0.036 0.717 0.272 0.623 0.367

Histological type

Benign 0.937 0.049 0.723 0.267 0.654 0.338

Malignant 0.932 0.055 0.735 0.254 0.658 0.332

Mass type

Round/oval 0.933 0.054 0.722 0.267 0.670 0.321

Spiculate mass 0.939 0.049 0.717 0.271 0.687 0.303

Irregular 0.931 0.055 0.727 0.263 0.686 0.306

Breast density

Low1 0.931 0.055 0.743 0.246 0.668 0.323

High2 0.933 0.054 0.727 0.262 0.669 0.322

Maximum diameter (mm)

10 ≤ d < 30 0.931 0.056 0.734 0.255 0.668 0.323

30 ≤ d < 50 0.930 0.056 0.730 0.259 0.674 0.317

d ≥ 50 0.935 0.052 0.726 0.263 0.674 0.317

AP, Average Precision; FNR, False Negative Rate. The highest AP or lowest FNR
values for the mass detection methods are in bold.

Assessment and Comparison of Mass
Segmentation Methods on DBT
Lesion segmentation was performed using the 3D-Mask RCNN-,
2D-Mask RCNN- and SFCM-based clustering methods. Table 4
illustrates the tumor segmentation results for all the samples in
the testing set and, in the subgroups according to the age range,
histological type, mass type, breast density and lesion size. From
the table, the 3D segmentation method clearly achieved superior
performance compared with the 2D-Mask RCNN- and SFCM-
based methods with higher APs and lower FNRs.

Running Time Evaluation and
Comparison
The training and testing of the deep CAD model were performed
on a Linux workstation with 16 CPU cores (2.1 GHz) and 6
NVIDIA 1080Ti GPUs with 11 GB of memory. The execution
time for the 3D-Mask RCNN, the 2D-Mask RCNN and the Faster
RCNN were approximately 350, 260, and 245 h, respectively.
The detailed description of the running times was illustrated in
Table 5.

DISCUSSION

The Mask RCNN framework was developed to detect masses in
breasts. It has been shown that the 3D-Mask RCNN is superior

TABLE 5 | Running time comparison of the deep mass detection networks.

Name Size (MB) Parameters Time per image (ms)

2D-Mask RCNN 244 4.93e + 07 195

3D-Mask RCNN 320 5.27e + 07 100

Faster RCNN 533 1.41e + 08 210

to the other two deep learning-based methods, namely, the 2D-
Mask RCNN and the Faster RCNN. Moreover, we have assessed
the detection performance in various subgroups of patients with
different age ranges, breast densities, histological types and tumor
shapes. The results suggested that the 3D-Mask RCNN achieved
significantly better performances than the 2D deep CNN models
on specific groups according to clinicopathological features.

A previous study used the Faster RCNN model with
VGG16 on the INBreast dataset to detect malignant masses
and calcifications (Ribli et al., 2018). A deep CNN with
multiple instance learning (Yousefi et al., 2018) achieved better
performances than the handcrafted features-based CAD systems
on 2D slices of DBT images. Samala et al. (2016) presented a
DCNN-based approach for mass detection using DBT images.
A recent study used the deep learning (Samala et al., 2019)
method with transfer learning to discriminate between the
malignant and benign masses in DBT images. However, these
studies were performed based on the 2D analysis of a deep
neural network. In this study, we showed that the 3D deep
learning method is superior to the 2D methods in both mass
detection and segmentation. It is interesting to note that the
Mask RCNN has better lesion-based detection performance
while the Faster RCNN achieved better breast-based mass
detection in DBT images.

The systematic analyses of the CAD systems showed that
the mass detection performances are correlated with patient
characteristics, such as age, histological type, mass type, breast
density, and mass size. The breast masses of patients who are 40–
59 years old are more difficult to detect. Moreover, CAD detection
was less accurate with more FPs for the samples with benign
tumors, irregular shapes, and dense breasts. Smaller (10≤ d< 30)
and larger (d ≥ 50) tumors were difficult for the deep learning-
based detection methods to detect (Table 3). We observed that
the 3D-Mask RCNN has significantly better (p < 0.05) mass
detection performance than the other 2D methods, especially for
specific groups that were more difficult to detect (i.e., those aged
40–59, benign tumors, irregular tumors and dense breasts). This
may be explained by the fact that DBT reduces the tissue overlap
and increases the lesion conspicuity, particularly in dense breasts,
which makes it rational that 3D methods have better detection
performance than those of the 2D methods. Moreover, 3D-Mask
RCNN method take advantage of volumetric information of DBT,
which is better than 2D methods in discriminating the masses of
irregular shapes from normal tissues (e.g., fibroglandular) with
fine textures/structures, especially in dense breasts. Since age is
inversely associated with breast density (Checka et al., 2012), it is
reasonable that detection performance is higher in older patients
(aged 60 years and older) than that in the others. The 3D-Mask
RCNN also achieved better segmentation performance than those

Frontiers in Molecular Biosciences | www.frontiersin.org 12 November 2020 | Volume 7 | Article 599333

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-599333 November 5, 2020 Time: 14:16 # 13

Fan et al. Mass Detection and Segmentation on DBT

Original Ground truth 3D Mask RCNN Mask RCNN SFCM

FIGURE 10 | Tumor segmentation results for the 3D-Mask RCNN, 2D-Mask RCNN, and SFCM. Five patients are included (from top to bottom).

of the 2D methods in the entire testing set and the subgroups
(Table 4). The case study also illustrates that the 3D-Mask RCNN
had fewer false positives than the other methods (Figure 10).

The limitations of this study should be addressed. First, the
sample size in this study is relatively small, especially when
the subgroup analysis was conducted on patients with different
clinicopathological characteristics. A data cohort with a larger
size should be used in the future to refine the results of our
study. Second, we do not perform transfer learning in this study.
A future study with transfer learning from mammograms might
enhance the accuracy of the mass detection/segmentation in
patients. Third, we used image patches for detection to save
computer memory, and thus, future studies that focus on the
entire image should be conducted.

CONCLUSION

In summary, we proposed a 3D-Mask RCNN-based mass
detection and segmentation framework for detecting and
segmenting tumor masses. A comparison of the 3D- and 2D-
based methods under different subgroups based on age ranges,
lesion sizes, lesion shapes, and breast densities was conducted.
We illustrated that the 3D-Mask RCNN has better performance

than the 2D methods, especially for subgroups with specific
clinicopathologic characteristics that show higher FPs, and the
improvement is significant.
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